СИНТЕЗ ПРОИЗВОДНЫХ АМИНОКАПРОНОВОЙ КИСЛОТЫ, ТАУРИНА И РЯДА АМИНОКИСЛОТ

<u>Бондарева Наталия Александровна¹, Пурыгин П. П.¹, Гильмутдинова А.С.¹, Баширова Л.И.²</u>

¹Самарский национальный исследовательский университет имени академика С. П. Королева (Самарский университет),

443086, Россия, г. Самара, ул. Московское шоссе, 34, nnkk86@mail.ru

²Ижевская государственная медицинская академия, 426034, Россия, г. Ижевск, ул. Коммунаров, 281

Введение

В настоящее время в современной фармацевтике используются различные препараты, влияющие на процессы гемостаза крови. Их спектр достаточно широк и хорошо изучен. Тем не менее остается открытым вопрос о синтезе новых препаратов, действующих на гемостаз, с меньшим количеством побочных эффектов. Таким образом, нами для работы была выбрана є-аминокапроновая кислота (рис. 1) — бесцветные кристаллы или белый кристаллический порошок без запаха и вкуса. Легко растворим в воде, очень мало в спирте, данное вещество обладает известным свойством — влиянием на угнетение фибринолиза.

$$H_2N$$

Рис. 1. ε-Аминокапроновая кислота

Нами были получены следующие композиции органических соединений: ε-аминокапроновой кислоты с таурином, ε-аминокапроновой кислоты с тауратом лития, ε-аминокапроновой кислоты с тауратом кальция, ε-аминокапроновой кислоты с лизином, ε-аминокапроновой кислоты с аспирином.

Полученные соединения были протестированы на агрегометре с использованием насыщенной тромбоцитами плазмы крови человека для определения анти- или проагрегантной активности данных соединений.

Показатели антиагрегационной активности новых веществ представлены в табл. 1.

Материалы и методы исследования

Получение кальция бис(2-аминоэтансульфоната): интенсивно перемешиваемую суспензию гидроксида кальция (7,4 г, 0,1 моль) в воде (50 мл) кипятят в течение 15 мин. Таурин (25 г, 0,2 моль) добавляли к этой горячей суспензии, и полученную смесь перемешивали в течение еще 15 мин. Полученный мутный раствор кальция бис(2-аминоэтансульфоната) фильтровали, а воду удаляли при пониженном давлении. Полученные влажные кристаллы обрабатывали этанолом (50 мл) до полной кристаллизации. Кальция бис(2-аминоэтансульфонат) отделяли фильтрованием, промывали этанолом и сушили под вакуумом. Выход составил 27,5 г (95%). Данные ИК и ЯМР спектроскопии подтвердили идентичность соединения. Синтезы лития 2-аминоэтансульфоната (лития таурата) и кальция бис(2-аминоэтансульфоната) (кальция таурата) и остальных солей и композиций были осуществлены аналогичным способом. Синтез одной из композиций (єаминокапроновой кислоты с таурином) представлен на схеме:

Заключение

Соединения показали различной степени выраженности влияние на функциональную активность тромбоцитов. Таурат магния проявил проагрегантный эффект, увеличивая агрегацию тромбоцитов, индуцированную АДФ на 1,5%, а коллагеном на 1,7% в сравнении с контролем, что уступает значениям этамзилата.

Таким образом, в ходе проведенного эксперимента, нами были получены комплексные соединения на основе таурина, є-аминокапроновой кислоты и ряда аминокислот. Также проведено исследование влияния полученных соединений на агрегацию тромбоцитов.

Таблица 1 Показатели антиагрегационной активности и названия исследуемых веществ и препаратов сравнения, Ме (0,25–0,75).

	Вещество	АДФ, %	р	Коллаген, %	p
1	Магния таурат	-1,7 (-0,5/-3,3)	p ₅ =0,001	-1,5 (-1,3/-2,7)	p ₅ =0,3
2	Лития таурат	1,7 (0,8–3,6)	-	1,1 (0,7–2,4)	-
3	Натрия таурат	4,5 (5,3–9,1)	-	5,7 (5,1–8,9)	-
4	Калия таурат	8,5 (7,3–10,1)	$p_1=0,3$ $p_2=0,001$ $p_3=0,003$	9,7 (7,4–10,5)	p ₁ =0,003 p ₂ =0,002
5	АК+таурин	11,8 (8,7–12,5)	p ₁ =0,007 p ₂ =0,004 p ₃ =0,09	12,3 (10,5– 13,9)	p ₁ =0,003 p ₂ =0,008 p ₃ =0,001 p ₄ =0,0003

Данные достоверны в сравнении с контролем при p<0,05, n=6. Уровень статистической значимости различий в сравнении с эуфиллином (p_1) , кофеин-бензоатом натрия (p_2) , аспирином (p_3) , пентоксифиллином (p_4) , этамзилатом (p_5) .